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which leads to the “integral equation for scattering.”

Using this formalism it is shown that the resultant
energy distribution differs from that of the one-
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dimensional treatment because of the appearance
of additional energy- and angle-dependent pre-
exponential factors,
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Numerical Solution of the Equation Governing Nuclear Magnetic Spin-Lattice
Relaxation in a Paramagnetic-Spin-Doped Insulator®
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(Received 16 June 1970)

A numerical solution of the equation

amE D<1 az(Mg)> (M*— M5)C

ot v v v

governing nuclear relaxation in a paramagnetic-spin-doped insulator has been obtained. The

results are expressed in terms of

@ = Iug -2 @) 7?2 dr/b ridr

where M(0) =0, b is the so-called “diffusion barrier” and (47R%/3)~! equals the paramagnetic-
spin concentration. Sxmple analytic forms for the long-time exponential decay of m(t) are

obtained for either D or C dominating the relaxation process.

Graphical solutions for the in-

termediate regions are also obtained. The short-time nonexponential solution of m(t) is dis-

cussed.

INTRODUCTION

Bloembergen' and others? have argued that the
differential equation governing nuclear spin-lattice
relaxation in an insulator with a low concentration
of paramagnetic spins is

oM* 1 & . s- ME
o =D<¢ a2 M) = T @

where M§ is the equilibrium nuclear magnetization
and

T,(r) = (80 v, BPS(S+ 1) sin?0 cos®O[T (1 + wi 72)"1])

=TT+ WfTt, (2)
where () means angular average, D is the spin-
diffusion constant, w, is the nuclear Larmor fre-
quency, and r =0 defines the location of a para-
magnetic impurity. The boundary conditions de-
fining the solution of Eq. (1) are

Mz(,),’ 0):0; (3)

which indicates saturation of the nuclear spin
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system at £=0 and

(b t)— (R t)=0,
where b is called the “diffusion-barrier” radius!
and R is defined as

N-1'=%4R?, (4)

where N is the concentration of paramagnetic im-
purities.

There have been a number of approximate ana-
lytical solutions? of Eq. (1) and it is the purpose
of this paper to check their range of validity by
obtaining a numerical solution of Eq. (1).

In the usual solution of Eq. (1) an additional
parameter b, is introduced which is defined as the
radius which separates those nuclear spins con-
tained in twice the NMR half-width and those out-
side this width, thus roughly?‘?

u'/b?]=AM ’ ()

where u/73 defines the local-field shift of nuclei
arising from the angularly averaged dipole field of
a paramagnetic impurity, and AM is the full width,
The sphere defined by b, is generally considered to
include those nuclei which are shifted out of the
normal NMR signal. b, the diffusion-barrier ra-
dius, will be similarly defined as

am=pto-5, (6)
where a is approximately a lattice constant for the
nuclear spin lattice. Equation (6) is equivalent to
assuming no spin diffusion for spins whose reso-
nance frequencies are more than a full width apart,.

Contrary to what has been previously suggest-
ed,?Y p can be larger or smaller than b,. The
crossover radius is determined by equating Eq.

(5) to Eq. (8) to determine the conditions under
which b=b,; thus
S R
(b a)3 b3 b3 ’ (7)
21/3
bo 21 3_1N5a . (8)

For b<5a, by<b and for b>5a, by>b. We will show
that for a large b the nuclear spin-lattice relaxa-
tion time will be insensitive to our choice of b,
and for by’s less than b the spins between b, and
b will relax very rapidly and will not contribute
to the experimentally observed relaxation time.
Thus, to avoid the added complication of defining
both b and b, separately, we will always assume
an effective by="0.

To simplify the numerical evaluation of Eq. (1)
we made the following changes of variable:

m=Mg—M*, r=px,

U='Vm, y= (El/ZD-S/Z), (9)
t=y1, B=(C/D)*.

Substituting Eq. (9) into Eqs. (1) and (3) we obtain

dv av v

ar ox? x9°
v(x,0)= BxM§ , (10)

w_1 fx=b/p
ox x )x=R/B’

The physical quantity that is “observed” and
whose dependence we will calculate is

m(t)=4n ‘];R[Mg—M‘(t)]rzdr/Mr j;R Eyidr

= f;Rm(t)Tzdr/j"’R mt= 02 dr
= fbfﬂ/ﬁv(x,’r)xdx/j’;zev(x’ O)xdx. (1)

The amplitude of an experimentally observed
free-induction decay signal at a time ¢ after satu-
ration should be proportional to m(¢).

The ratio B/b, as can be seen from Eqgs. (9)
and (10), measures the relative importance of
direct relaxation and spin diffusion. In Sec. I
we will discuss the time dependence of Eq. (11)
for B/b<<1 (rapid diffusion); in Sec. II, we will
discuss, and obtain graphically, the exponential
(long-time) solution of Eq. (11) for B/b>1 (dif-
fusion limited); and in Sec. III we will discuss for
B/b>>1 the short-time (nonexponential) solution.

I. TIME DEPENDENCE FOR /b <<1

For the diffusion constant D large enough such
that

B/b<1, (12)

the diffusion effectively proscribes any spatial
variation of M*(r, ) for »>b. As Blumberg*?
has suggested, one then can solve Eq. (1) with
the boundary condition given in Eq. (3) to obtain
m=1 —e"/T?" s

where

T?"_TT&”M_( ) (B) , (13)

In Fig. 1 the ratio € is plotted
Ty

€ = oomp
in

_R%*/C_(R/BF(b/B)

- omp omp
7“1’" T‘lzﬂ

) (14)

as a function of B/b. Two points should be made:
It can be seen from Fig. 1 that Eq. (12) can be
realistically defined as
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FIG. 1. Ratio e=(R/B)3(6/p)%/7, is plotted as a
function of 8/b for R/f=1.33, 1,60, 2,00, 2,60, 4,00,
and 8. 00,

B/b< 3%, (15)

and that the spatial nonvariation of M* for B/b< 3
implies that the relaxation time T',, will be inde-
pendent of b,.

II. EXPONENTIAL SOLUTION FOR /6 >> 1

The computer solutions of the exponential (long-
time) behavior of Eq. (11) are exhibited in Fig. 1.
The range of R/B and b/B is taken to cover most
practical experimental situations. As discussed
in Ref. 2(f), the one-center approximation im-
plicit in Eq. (1) breaks down for R/B~1, and a
continuum theory [implicit in Eq. (1)] breaks
down for b/a—1.

From the solutions given in Fig. 1 one obtains
the useful heuristic result that for 3/6>2.5

+0.06
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-0040
o130}

-0.220f

-0.310~

Inw(r)

-0.400}-

-0.490—

~0.580

T

-0670! | | il | 1
0.000 0.040 0.080 0.120 0.160 0.200 0240

T
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ToemP = Ty~ § (R/BY(R/B-1)V3 . (16)

This is to be compared with the result obtained
previously by approximate analytical arguments?
that for B> b

T3 /v~ 3[R/B} . 1)

We believe Eq. (16) to be the most useful result
obtained from our computer solutions. With the
restriction that 8/b> 2.5, Eq. (15) fits all points
in Fig. 1 within a few percent.

III. NONEXPONENTIAL SOLUTION FOR §/b >> 1

The short-time behavior for #(r) can be seen
in Fig. 2 for two values of 3/b. We note that for
B/b> 1, the initial time dependence is not expo-
nential. We can understand this result if we solve
for m(7) assuming that for a large value of B/b
the diffusion contribution to Eq. (1) can be ignored
for short times. The reasonableness of this as-
sumption stems from the initial constancy of M*
(r,0), implying that

1 3% 2
D(;gﬁ(ﬂw»=o,t=& (18)

Thus the diffusion contribution for weak diffusion
will only contribute after a sizable gradient in

M?*(r,7) has been established. One then finds that
for short times?*’

— 3.1/2 2
mr)=1- T2 (BT (1-e* 2 dg
f(B/RPTVZ )&

X[@®R/BY - (0/8F]" . (19)

If we additionally assume
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FIG. 2. Inm(r)as a function of 7 is plotted for (a) 8/b=5, R/B=1.33 and (b) B/6=0.5, R/B=8.00.
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FIG. 3. (a) Inm(t) is plotted as a function of ¢ for 8/b=3.8 and R/B=1.05. (b) m(¢) is plotted as a function of /2 for
B/b=3.8 and R/B=1.05,

R/b >> 1, (B/R )371/2 - 0, (ﬁ/b)&rllz > l'y (20)
then m(7) simplifies as?‘®

m=1+ (b/BP+ (b/R) - TV271/2

<[1+@®/RP++e-]+-0-, (21a)
m=1+(b/BP+ (b/R) -4$n%% N(Ct)/2.
x[1+@®/RP+- 4. . (21b)

From an experimental point of view, Eq. (21b) in
real time is apparently extremely useful as its slope
tolowest order is independent of D and b, Actually
an experimenter must, after obtaining the coeffi-
cient $7°/2 NC'2 from a section of his curve which
is “visually” linear in {2, check to see if the con-
ditions given in Eq. (20) are satisfied. Thus, in
effect, no conclusion can be drawn from the ¢'/2
portion of the 7(7) curve without knowing all the
defining parameters.

In Fig. 3(a) is plotted lnm(¢) for a particular
set of parameters R=4x10", C=2.1x10"%,
b=10", D=10""% B/p=3.8. In Fig. 3(b) m (¢) for
the same set of parameters is plotted against ¢ for
¢t small, i.e., the nonexponential region in Inn(¢).
Writing

mt)=1-atV? (22)
where

a=47¥2NCV? (23)

one finds @=~4 from both graph and equation. We
also find using the criteria of Eq. (20) that

(Ct)V2/p®>2 (24)
(Ct)V2/R*<0.1, (25)
which implies that ¢ Y2 behavior should exist be-

tween 1.4 x10%<¢tY2<4,4x 102, Thus our result
is consistent with the graphical solution in Fig. 3().

IV. CONCLUSION

From Fig. 1, one can conclude that there are
two limiting equations describing the exponential
time behavior of Eq. (11):

Ty./v=R/DP(B/BY, B/b< % (26)
T../v=+®R/BP(R/B-1)3, B/b>2.5. (27)

For B/b between these limits numerical solutions
can be obtained from Fig. 1. The ¢ /2 behavior of
Eq. (21b) for B/b>1 is useful, for it determines
the parameter a=% 7%2NCY?, but an apparent
t1/2 dependence must be checked by the require-
ment that

2% /CV2<tY2< (0.1)R3/CV2, (28)
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Temperature-Dependent Spin-Hamiltonian Parameters of Mn’*
in Trigonal Sites of CaCO 31‘
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Department of Physics, Clarkson College of Techology, Potsdam, New York 13676
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The spin-Hamiltonian parameters of divalent manganese in CaCO; have been measured over

the temperature range 4.2—-850°K using electron-spin-resonance-absorption techniques.

Ei-

genvalues to the spin-Hamiltonian and best-fit parameters were obtained using perturbation
calculations, where the off-diagonal component in the hyperfine interaction is treated as the

major perturbation. The crystalline-field parameters and the hyperfine-coupling constant A
were found to decrease in magnitude with increasing temperature, although there was no mea-
surable variation of the g value over this temperature range. Variation in the parameters
with temperature is discussed in terms of implicit (thermal-expansion) and explicit (lattice-
vibration) effects. Contributions from implicit effects were evaluated using previously re-
ported isothermal pressure-dependent data. After correcting the experimental data for the
implicit effect, a large residual-temperature variation is found for the crystalline-field par-
ameters D and ay. This residual-temperature variation is attributed to lattice vibrations
which couple into the crystalline-field splitting energy. Temperature variations in the axial
crystalline-field-splitting energy can be explained, in part, by resonant vibrations which
couple to the impurity ion via a relativistic second-order correction proposed by Wybourne.
Temperature variations in the hyperfine-coupling constant A are also due primarily to explicit
effects. A detailed theoretical analysis of the temperature dependence of A for Mn?* in a non-
cubic environment has not been carried out. However, it is possible to qualitatively interpret
this temperature variation if it assumed that a large-amplitude local-mode vibration couples

strongly to the hyperfine-coupling parameter.

I. INTRODUCTION

In the past there has been a great deal of interest
in the origin of crystal-field-splitting energies of
S-state ions in various crystalline environments.
Several mechanisms have been proposed to explain
the manner in which the spin degeneracy of an S-
state ion is lifted by the presence of a crystalline
electric field. '~ In general, the crystal-field-
splitting energy arises from mechanisms involving
second- or higher-order perturbation terms in the
spin-orbit, spin-spin, and crystal-field interactions.
There hasbeen some success indetermining the most
important contributions to the crystal-field-splitting
energies for Mn® in ZnF, and MnF,; however, it
is not clear that the same mechanisms are predom-
inant in other environments. °~!! Recently, Wybourne
showed that if relativistic radial wave functions are
used inthe crystal-field calculations, there would
be an important second-order contribution to the
ground-state splitting of rare-earth S-state ions. 2
Van Heuvelen extended these calculations to the
Mn? ion and concluded that the relativistic contri-
bution to the axial crystalline-field splitting D pre-

dicts the correct sign but about one-half the magni-
tude of D in a number of salts.!® The relativistic
contribution to the crystal-field-splitting param-
eters was shown to be important in the case of Mn?*
in NaCl. !4

Another property of S-state ions which has been
given a great deal of attention is the origin of the
hyperfine interaction and the observed decrease of
the hyperfine-coupling constant with increasing tem-
perature in cubic environments. }*~% Walsh, Jeener,
and Bloembergen first recognized that the hyperfine-
coupling temperature dependence A(T) for Mn% in
cubic environments is largely due to explicit effects,
e.g., lattice vibrations. !> However, as these in-
vestigators have pointed out, the implicit (thermal-
expansion) effect also contributes to the variation
of the hyperfine-coupling constant with temperature.
In the case of Mn®* in MgO, the implicit effect is
small compared to the explicit effect. Simanek and
Orbach proposed that the explicit temperature de-
pendence of A for S-state ions in cubic environments
is due to the mixing of the Mn? 3d orbitals with
higher-lying ns orbitals through the orbit-lattice



